圆柱的表面积教学反思
身为一名人民教师,教学是我们的任务之一,写教学反思可以很好的把我们的教学记录下来,教学反思应该怎么写呢?下面是小编整理的圆柱的表面积教学反思,仅供参考,希望能够帮助到大家。
圆柱的表面积教学反思11、直观演示和实际操作相结合。
新课开始,教师通过圆住教具直观演示,引导学生复习圆柱的特征,进而理解圆柱表面积的意义。在教学侧面积的计算时,精心设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?想一想,能否将这个曲面转化为我们学过的平面图形,从中思考和和发现它的侧面积该怎样计算呢?在老师的启发下,学生以小组为单位,用圆住形纸筒进行实际操作,最的探究出侧面积的计算进行实际操作,最后探究出侧面积的计算方法。
2、培养了学生的合作创新意识。
在教学圆住侧面积计算方法时,教师设有拘泥于教材上把侧面积转化为长方形这一思路,而是放手让学生合作探究;能否将这个曲布置民化为学过的平面图形?鼓励学生大胆猜想和实验,把圆柱形纸筒剪开。结果学生根据纸筒的特点和剪法分别将曲面转化成了长方形、正方形、平行四边形等两面图形。通过观察和思考,最终都探讨出了侧面积的计算方法。在组织学生合作学习中,较好地培养了学生的创意识。
圆柱的表面积教学反思2为了能充体现新课程理念,促进学生的发展,教学过程中我精心安排了观察、操作、讨论交流、应用等教学活动,同时积极营造愉快、民主、轻松、和谐的学习氛围。反思整堂课程教学主要围绕以下几点展开:
一、打破传统教学,灵活合理地重组教材
“圆柱的表面积”这部分数学内容包括:圆柱的侧面积、表面积的计算、表面积在实际计算中的应用。教材安排了一道生活例题,分步教学。备课时,我打破了传统的教学程序,将这些内容重新组合,合理把握教材,力争有效的完成教学任务。首先将侧面积计算方法的推导作为教学难点来突破:后将表面积的计算作为了重点来教学;将表面积的实际应用作为重点来练习。三者有机结合、相互联系、多而不乱。教学设计和安排既源于教材,又不同与教材。例题并没有专门的教学,但其指导思想和目的要求分别在教学过程中得以体现。整个一节课,增加容量但又学得轻松,极大提高了课堂教学效率。
二、充分发挥教师主导与学生主体作用的统一。
本节课在教学上采用了引导—合作—引导的方法,通过教师的“导”,鼓励学生积极、主动地探求新知。
1、直观演示与实际操作结合
新课开始,教师通过圆柱教具直观演示,引导学生复习圆柱体的特征,进而理解圆柱体表面积的意义。在教学侧面积的计算时,精心设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?想一想,能否将这个曲面转化为我们学过的平面图形,从中思考和发现它的侧面积该怎样计算呢?在我的启发下,学生以小组为单位,用圆柱形纸筒进行实际操作,最终发现圆柱的侧面展开图有多种形式,而不是单纯的照本宣科,沿高线展开;另外实践中使所有图形进而转化为长方形。实现教材的回归,最后探究出侧面积的计算方法。
2、教师讲解与学生练习相结合
教学过程中,我改变了传统的先讲后练的教学模式,做到讲练结合惯穿始终。而且使练习随着讲解由易到难,层层深入,一环紧扣一环。具体做法是:在学生理解圆柱的侧面积的公式后,安排学生强化训练:紧接着又复习圆面积公式,训练计算圆柱的底面积,利用计算所得的数据,合理自然地计算出圆柱的表面积。在练习表面积的实际应用时,又很自然地进行了实际生活问题的引导教学。使学生学得轻松,练得有趣。
三、较好地培养了学生的创新意识
1、培养了学生的合作创新意识。
在教学圆柱侧面积计算方法时,我没有拘泥于教材上把侧面积转化为长方形这一思路,而是放手学生合作探究,鼓励学生猜想和实验,最终学生通过动手、观察和思考,探讨出了侧面积计算方法。在组织学生合作学习中,较好地培养了学生的创新意识。
2、培养了学生的实践能力。
本节课我大胆给予学生自主探索的时间与空间,让学生动手测量、动手实践,使学生处于学习主体的地位,充分发挥每一个学生的潜能,让学生在合作学习中不仅达到学以致用的目的,而且培养了实践能力。
四、较好地利用现代化的教学手段。
本节课合理地利用了多媒体教学技术。在讲练过程中,动态课件演示,并闪烁所求底面和侧面。将直接的告诉条件和问题变成动态的先后展示,不仅做到思路清、方向明,而且极大地调动了学生学习的积极性。另外,多媒体将生活中的罐头盒、笔桶、圆柱立柱等实物“搬”到课堂,加深了学生对表面积实际计算意义的直观认识和理解,使学生感受到了数学与现实生活的密切联系
五、课后拓展、知识设计联系实际。
安排有:只有侧面的圆柱形;只有一个底面的圆柱形;两个底面都有的圆柱形。设计题目的计量单位有所不同。课后习题层次加深,始终以培养学生审题习惯及应用能力的提高为主线。
当然,在这节课的教学中,还存在着一些不足:
一、我整节课的板书安排不够合理,书写有些潦草!
二、实践操作时间安排有些急。在动手探索圆柱侧面积的计算方法时,大部分学生操作慢,展示推导的过程有些短促,导致个别学困生只能听听而已。
三、学生对圆周长和面积的计算不够熟练,所以,在计算圆柱的侧面积和表面积时显得费时费力;小组合作的初衷也是好的,但在实际教学中却没有达到预期的要求。在以后的教学中,我还应该多吸取教训,弥补自己的不足,用更好的教学方法进行数学知识的教学。
圆柱的表面积教学反思3一、合理灵活地组织和利用教材。
“圆柱的表面积”这部分教学内容包括:圆柱的侧面积、表面积的计算,表面积在实际计算中的应用以及用进一步取近似值。教材共安排了三道例题,分两课时进行教学。教学时,我打破了传统的教学程序,将这些内容重新组织,合理灵活地利用教材在一课时内完成了两课时的教学任务。将侧面积计算方法的推导作为教学的难点来突破;将表面积的计算作为重点来教学;将表面积的实际应用作为重点来练习;将用进一法取近似值作为一个知识点在练习中理解和掌握。四者有机结合、相互联系,多而不乱。教学设计和安排既源于教材,又不同于教材。三道例题没有做专门的教学,但其指导思想和目的要求分别在练习过程中得以体现。整个一节课,增加容量但又学得轻松,极大提高了调堂教学效率。
二、较好地体现了教师主导与学生主体作用的统一。
本节课在教学上采用了引导、放手、引导的方法,通过教师的“导”,鼓励学生积极、主动地探究新知。
1、直观演示和实际操作相结合
新课开始,教师通过圆柱教具直观演示,引导学生复习圆柱体的特征,进而理解圆柱表面积的意义。在教学侧面积的计算时,精心设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?想 ……此处隐藏9491个字……发现探索的积极性,让学生思考还可以将圆柱的侧面怎样展开。有的说横着从中间剪一刀,立刻有人反对说那还是两个圆柱。横剪不行,竖剪过了,还能怎么剪?同学们犯起了愁。在一阵思考之后有人冒出一句:“斜剪!”“展开之后是什么图形?”有人猜是三角形,有人说是梯形,有人说平行四边形,带着种种可能同学们又开始给圆柱穿上一层衣服,然后沿着斜线剪开,结论不用说,平行四边形展现在同学们面前。继续用平行四边形推导侧面积公式,平行四边形的底是圆柱的底面周长,高呢?是不是平行四边形的斜边?经过一番争论之后,得出高需要重新做垂线。
二、展开之后的图形可以怎样还原成圆柱?数学课要培养学生的思维能力,如果会展开那只是顺向思维,展开后会还原才能培养他们的逆向思维。“长方形和正方形都有两种还原方法,那平行四边形是否也有两种还原方法?”问题抛出又产生了分歧,很多同学只会按剪开之后的形状还原,再换个方向竖起来就不行了,总是上下各有两个尖角,其实这是学生拿平行四边形的方式有问题,让他们把平行四边形的斜边贴到桌子上再还原,这样就有很多人展开了笑脸。“找窍门,怎样不贴到桌子上也能正确还原?”细心的同学发现只要捏住相邻的两个角就能轻松还原了,一句话——角对角。得到结论:只要是平行四边形一定可以围成圆柱。
通过圆柱侧面展开图的深入研究,同学们打开了探索、创新的思维,知道了学习不能只停留在书面的内容,应深入探讨,多方面多角度思考,要知其然,更要知其所以然。
实践也使我们体会到,创建“生活课堂”应从学生的生活实际出发,关注学生的情感体验,调动学生的生活积累,帮助他们架设并构建新的平台,让学生发现数学问题,并激励学生在实践中探索解决问题的方法,从而提高学生整体素质,个性得以发展。
圆柱的表面积教学反思141、把握重点,突破难点,合理利用教材。
对于圆柱体侧面面积计算公式的推导,严格遵循主体性原则,让学生动手操作、观察、发现,促进知识的迁移,使学生轻松地理解掌握圆柱侧面面积的计算方法,较好地突破难点。
2、直观演示和实际操作相结合。
通过直观演示和实际操作,引导学生观察、思考和探索圆柱体表面积的计算方法,鼓励学生积极主动地获取新知,
3、让学生自主学习,探究圆柱的侧面积和表面积的计算方法。
让学生自主学习,对培养学生的学习兴趣和学习能力有较大的帮助,使学生在学习过程中获得数学知识,并感受学习的快乐与成功感。
4、讲解与练习相结合。
本节课,改变了传统的先讲后练的教学模式,做到讲、练结合,贯穿教学的始终,使练习随着讲解由易到难,层层深入。在练习表面积的实际应用时,又很自然地进行了“进一法”的教学,使讲、练,真正做到了有机结合,学生学习的知识是有效的、实用的,同时也激发了学生学习数学和运用解决实际问题的兴趣,培养了学生的应用意识。
5、使学生能正确计算圆柱的侧面积和表面积。
为了让学生能正确地计算圆柱体的表面积,我要求学生先用分部算式计算,并写清s侧=和s表=,以便学生分清自己每一个算式计算的是哪部分的面积。
6、发展学生空间观念,并能利用知识合理灵活地分析、解决实际问题。
在这方面的练习题中,学生往往对题意理解不够,不知道是计算哪些部分的面积,通风管的材料,有不少学生加上两个底的面积。为了让学生发展空间想象能力,我提示学生在解决问题前,一定要弄清题意,并尽量回忆一上实物的结构,自己没有见过的,应通过日常应用知识来想一想、画一画,看看它应是个什么样了的,再作解答。学生中出现的共性问题,教师再集中讲一讲。这样一来,就大大地提高了学生灵活运用知识解决问题的能力。
总之,这节教学内容是本册教材中的一个重难点,如何能达到更好的教学效果,有待我们教师去探索、去研究适合学生心理接受的更好之法。
圆柱的表面积教学反思15“圆柱的表面积”一课,教材先提出“圆柱的表面积指的是什么”,让学生在交流中逐步理解圆柱表面积的含义。然后安排了让学生将圆柱模型展开,看一看展开的面是由哪几部分组成的,把它们标出来等探究活动,目的是让学生经历实验研究,建立数学模型的抽象思维过程,发现圆柱的表面积与已经学过的图形面积之间的联系,从而得到圆柱的表面积的计算方法。
对于圆柱表面积的知识,学生不是一张“白纸”。有的学生可能已经从数学课本上了解了一些,加之在“圆柱的认识”中也有了一些体验和感悟,个别学生在课外学习中已经知道一些圆柱表面积的计算方法。但是即使学生知道方法,却不一定真正理解。所以,教学中教师注重通过出示学习材料、提问、让学生操作和演示等活动,帮助学生获得圆柱的表面积与圆面积、长方形面积之间的联系。对于圆柱体侧面积计算公式的推导,要遵循主体性原则,让学生动手操作,在观察、推理中促进知识的迁移,使学生掌握圆柱体侧面积的计算原理和方法,即通过“等积变形”将圆柱的侧面转化为长方形。同时在教学过程中要尊重学生的知识基础和已有的生活经验,让学生亲身经历将实际问题抽象成数学模型进行解释与应用的过程,并根据课堂教学的实际调整教学思路。
我认为.数学建模活动要有利于学生的数学理解。数学教学活动要促使学生“真正理解和掌握基本的数学知识与技能,数学思想和方法,获得广泛的数学活动经验”。因此,数学教学活动的设计要有利于学生理解数学。本节课的教学,要让学生明确圆柱表面积的含义,知道表面积的计算方法,会用表面积的计算公式进行计算,更重要的是要引导学生经历探究圆柱表面积计算公式的过程,遵循由“观察物体——建立表象——抽象图形——建立模型(空间观念)”的认知规律,通过实践操作、讨论、交流等活动,促进学生对数学的理解。课开始,教师从数学知识的内在联系入手,提出两个综合性问题,唤醒学生对有关表面积计算的回忆,这是顺利开展数学活动、理解圆柱体表面积的重要基础。接着提出:“圆柱的表面积指的又是什么?”为后来的操作和丰富直观表象起到了导向作用,从而为学生经历建模过程,达成数学理解奠定了坚实的基础。
本节课我安排了自己制作、剪开、展开侧面、观察图形等活动。通过实践操作,使学生领悟长方形的长相当于圆柱底面的周长,长方形的宽相当于圆柱的高,从而逐步归纳出圆柱的表面积的计算公式。由此可见,借助实践操作活动建立丰富的直观表象,可以为学生的数学理解提供支撑,更重要的是在操作过程中学生积累了数学活动经验,奠定了良好的数学理解基础。
我给学生留出了较为充裕的思考与实践操作的时间,在得出结果后,教师尽可能全面把握学生的情况,及时捕捉课堂资源,提出:“说一说,在计算圆柱的表面积时,应注意些什么?”组织学生进行交流,在交流和讨论中,形成师生、生生之间的有效互动,促进学生将实际问题抽象成数学模型并进行解释与应用。
在练习中,我首先出示一组基本练习题,使学生熟练掌握求一般的圆柱体表面积的方法,加深对圆柱体表面积公式内涵的理解和把握。接着进一步联系生活实际提出问题让学生解决,体验运用知识成功解决问题的愉悦。最后,通过让学生再次回想计算圆柱体表面积的公式,进而加深对新知识的掌握。
文档为doc格式